Skip to main content

Additional information of a technological helicopter

No runway, no problem—have helicopter, will travel! Igor Sikorsky (1889–1972), father of the modern chopper, had no doubt at all about the brilliance of this amazing, flying machine, which he said was the closest thing to “fulfillment of mankind’s ancient dreams of the flying horse and the magic carpet.” Jet planes are wonderful for screaming us from one side of the planet to the other. But when it comes to tricky rescue missions—plucking stranded sailors from the sea, hurling tubs of water onto forest fires, plucking engineers off wind turbines, dashing the critically injured to hospital—nothing beats a chopper. According to science historians, inventors had been trying to develop flying machines with spinning rotors for over 2000 years before Sikorsky finally built the world’s first practical helicopter in 1939. Why did it take so long? Because helicopters are incredibly complex machines—miracles of intricate engineering that take real skill to fly. How exactly do they work? Let’s take a closer look!

How does a helicopter stay in the air?

The science of a helicopter is exactly the same as the science of an it works by generating lift—an upward-pushing force that overcomes its weight and sweeps it into the air. Planes make lift with airfoils (wings that have a curved cross-section). As they shoot forwards, their wings change the pressure and direction of the oncoming air, forcing it down behind them and powering them up into the sky: a plane’sspeed it forward, while its wings fling it up. The big problem with a plane is that lots of air has to race across its wings to generate enough lift; that means it needs large wings, it has to fly fast, and it needs a long runway for takeoff and landing.

Helicopters also make air move over airfoils to generate lift, but instead of having their airfoils in a single fixed wing, they have them built into their rotor blades, which spin around at high speed (roughly 500 RPM, revolutions per minute). The rotors are like thin wings, “running” on the spot, generating a massive downdraft of air that blows the helicopter upward. With skillful piloting, a helicopter can take off or land vertically, hover or spin on the spot, or drift gently in any direction—and you can’t do any of that in a conventional plane.

Key parts of a helicopter

A typical helicopter has thousands of intricate components, but we only need to worry about a handful of the bigger bits. The main framework is called the fuselage and it’s typically mad It contains one or two engines, a transmission, and gearboxes, which power one or two main rotors and a much smaller tail rotor at the back.